Automatisierte Anlagen-Analyse in der Gebäude-Leittechnik

Energie- & Umweltbüro e.V.

Julia Kurde, Pilar Munoz, Reinhold Maurer

AMEV Arbeitskreis Gebäudeautomation Sitzung am 4. und 5. Juli 2019 Hochschule Ruhr-West Bottrop

Der Forschungsauftrag "AutoEffi" wurde gefördert vom BBSR im BBR (Zukunft-Bau / F20-12-1-155)

Die AMEV-GA-Plattform

jLZHview / jLZHweb, Energie- & Umweltbüro e.V.

Eine Visualisierung der AMEV-GA-Plattform

• jLZHview: Desktop-Anwendung

- Für Windows / Linux
- Mit Java 8 (aktuelle Oracle-Version 32 Bit)
- jLZHweb: Browser-Anwendung
 - Mit Tomcat 8 für Windows / Linux (32 / 64 Bit)
 - Zugriff via Browser z.B Chrome, Opera, ...
- Ansicht und Funktionsumfang der beiden Varianten sind äquivalent

Funktionsumfang (Auszug)

- Aufgeschaltete Leitzentralen im Überblick
- Anmeldung bei der Datenbank
- Aufgeschaltete Anlagen im Überblick
- Meldungen im Überblick
- Datenpunkte abfragen, schalten / stellen
- Schemata anzeigen und bearbeiten
- Messwerte anzeigen
- Analyse des Anlagenbetriebs

📐 il 7L		Η.										T		• C	The	roca 🛛
					Z	liel										
Objekt:	BAFW: Michael-Bruckner-Str.9	•		Ei:	nzelraum						T _{V max NZ}	80.0	°C VE	ck NZ 60	.0	C
4 🚖 Z	LT-Server-EUB: MARGA via FTP	🔺 ज		151.0	°C						T _{S min NZ}	-15.0	°C SEr	ck NZ 0.	0	C
) b 🕞	MELDUNGEN															20
- A 🗁	OBJEKTE (Status: in Betrieb)	Ear	1	22.0	°C								— Т.	/min N7	5.0	°C
	🔁 BAFW: Michael-Brückner-Str.9	×	K	DAT	UM_VON	ANZAHL	MIN	MAX	AVG	STDDEV	1	2	3	4	5	6
	🔁 BARB: Barbarossaplatz 5		1	2018-01-01	00:00:00	1602	-0,773	8,688	3,879	2,289	1	-0,999	-0,957	-0,728	-0,618	-0,618
	BAUS: Bausznernweg-3.12279.TH.e		1	2018-01-01	00:00:00	1602	50,296	65,698	58,668	3,927	-0,999	1	0,957	0,732	0,62	0,62
	🔁 BREF: zum Testen		1	2018-01-01	00:00:00	1602	43,98	68,813	58,612	4,054	-0,957	0,957	1	0,742	0,538	0,539
	😝 HWEG: Hornblendeweg 2	≡	1	2018-01-01	00:00:00	1602	31,416	49,165	43,589	2,751	-0,728	0,732	0,742	1	0,215	0,215
<u>.</u>	😝 KURF: Kurfuerstenstr-53.12105.S		1	2018-01-01	00:00:00	1602	45,567	98,88	75,798	6,568	-0,618	0,62	0,538	0,215	1	1
																1
	 Analyse des Ar 	la		ienhei	trie	hs										
	/ maryse des / magenbeenebs															
	 So automatisie 	rt	V	vie m	ogii	cn										
					-											and a

Mit so wenig Arbeit wie möglich für den Anwender

÷

Automatisierte Anlagen-Analyse... Warum?

Stellen Sie sich vor, Sie betreuen ein System mit

- einer übergeordneten Zentralen Leittechnik (ZLT)
- 400 Gebäude-Leittechnik-Anlagen im Feld (GLT)
- erstellt im Zeitraum von 1998 bis dato
- erstellt im Wettbewerb diverser Hersteller

Und denken Sie dabei auch an den technischen Fortschritt der letzten 20 Jahre

- bei den MSR-Anlagen (Messen-Steuern-Regeln)
- bei der Kommunikation (Modem, ISDN, RS232/RS485, UDP, TCP/IP, HTML, Internet)
- bei der Soft- und Hardware (Programmiersprachen und Mainboards ...)

Automatisierte Anlagen-Analyse... Warum?

Die Betreuung eines derartigen Systems wird ein hilfloses Unterfangen **ohne** eine einigermaßen vorausschauend geplante Struktur.

Kommunikation	mit den MSR-Anlagen via firmenspezifische Protokolle
Fernüberwachung	dieser MSR-Anlagen via Netzwerke
Langzeitarchivierung	der Daten via Datenbanksystem, Zentrale-Leittechnik
Bezeichnung der Daten	Adressen, Klartexte,
Wartung und Pflege	Störmelde- und Wartungsmanagement des Gesamtsystems
Anlagendokumentation	selten auf aktuellem Stand
etc.	

Wenn das soweit **funktioniert**, haben Sie **keine Müllhalde** von Daten, sondern einen Datenozean indem "gefischt" werden kann!

Anmeldung bei der Datenbank

Datei Bearbeiten Daten Schema Verwaltung Extras Fenster ?	
┃┃ ⑧ 🕵 수 수 🗉 🦁 膠 🏤 印 🖬 🖃 🗷 🖷 🐨 🍕	15 💖 🔛 💥 🙀 🕅 👁 🔻
🏠 juzH-Baum 🗙 😂 🕹 🕒 🗖	
Anmelden bei einer LZH	
Objekt:	
⊿ 👚 ZLT-Server-EUB: MARGA via FTP	ZLT-Server-EUB: FTP ×
Verbindung wird initialisiert	Anmelden bei der Datenbank
> 🗇 ZLT-Server-BA-NKN: Zentrale-LeitTechnik im Bezirksamt	
▶ 🗇 ZLT-Server-BA-RDF: Zentrale-LeitTechnik im Bezirksamt	SID LZH
▶ 👚 ZLT-Server-BA-TK: Zentrale-LeitTechnik im Bezirksamt T	Benutzer JK
▶ 👚 ZLT-Server-BA-TS: Zentrale-LeitTechnik im Bezirksamt T	Passwort
▶ 👚 ZLT-Server-LG-PG: Zentrale-LeitTechnik der Stadt Lüneb	
▶ 👕 ZLT-Server-LHD: LandesHauptstadt Düsseldorf (VPN)	– Bei Inaktivität –
▶ 🗂 ZLT-Server-LHM: LandesHauptstadt München (EUB:Genu	Abmelden nach 15 Aminuten
▶	
▶	
▶ 💼 ZLT-Server-LHM: Cloud-pg-prod-neu 172.17.18.138	OK Abbrechen
▶	
▶	
weitere in BA-NKN vor Ort	
▶ 🗇 GA-Server_BA-NKN_ADAH via IP 172.31.120.50 (VPN)	The Newigetienshown sind allo
▶ 🗇 GA-Server_BA-NKN_GZIE via IP 172.31.120.2 (VPN)	In Navigationsbaum sind alle
	Leitzentralen und GA-Server sichtbar.
(j) jLZH-Kurzinfo 💥 (j) LZH-Tabellen 🖳 Fortschritt 🔄 🗗 🗖	
ZIT-Server-EUB: MARGA via ETP	Die Einwahl erfolgt mit der Anmeldung be
	der I 7H-Datenbank

Liegenschaften (Objekte) im Überblick

Meldungen im Überblick

🛛 🗁 ZLT-Server-EUB: MARGA via FTP

- 🛛 🔁 MELDUNGEN
 - ANSTEHEND (letzter Zustand)
 - » > STATISTIK (im Zeitbereich)
 - » >>> UEBERTRAGUNG (heute aus GA-Knoten)
 - 📅 INFO_EVENT (letzter Zustand)
- Im Objekt oder global f
 ür alle Objekte
- Alarm, Störung etc.
 - Anstehend: Letzter Zustand (quittierbar)
 - Statistik: Welche und wie viele Meldungen gab es?
- Übertragung der Messwerte
 - Wie viel Prozent der Datenpunkte haben aktuelle Messwerte?
 - Getrennte Auflistung für die verschieden Datenpunkt-Typen
- Info-Event aus GA-Knoten
 - Der GA-Knoten hat ein internes Meldesystem
 - Dort anstehende Meldungen werden angezeigt

Meldungen: Übertragung der Messwerte Heute aus GA-Knoten: Welche Messwerte sind aktuell?

🛛 🔁 MELDUNGEN	KENNUNG	NAME	FND_TYPE	DATUMMESSUNG	DP_UEBERTRAGEN	DP_ANZAHL	%
🕨 📂 ANSTEHEND (letzter Zustand)	KURF	Kurfuerstenstr-53.12105.S	MELDEN	2019-06-19 14:04:34	18	169	10
) 🔁 STATISTIK (im Zeitbereich)	KURF	Kurfuerstenstr-53.12105.S	SCHALTEN	2019-06-16 12:00:00	0	66	0
🛛 📂 UEBERTRAGUNG (heute aus GA-Knoten)	KURF	Kurfuerstenstr-53.12105.S	MESSEN	2019-06-19 14:10:04	208	210	99
BIEKTE: UEBERTRAGUNG ALLE	KURF	Kurfuerstenstr-53.12105.S	STELLEN	2019-06-19 00:03:14	426	469	90
B OBJEKTE: UEBERTRAGUNG DP-TYPE-1	KURF	Kurfuerstenstr-53.12105.S	ZAEHLEN	2019-06-19 14:02:04	11	12	91
OBJEKTE: UEBERTRAGUNG DP-TYPE-2	SPRI	Springbornstr. 250	MELDEN	2019-06-19 14:11:20	10	49	20
📅 OBJEKTE: UEBERTRAGUNG DP-TYPE-3	SPRI	Springbornstr. 250	SCHALTEN	2019-05-17 10:50:08	0	26	0
📅 OBJEKTE: UEBERTRAGUNG DP-TYPE-4	SPRI	Springbornstr. 250	MESSEN	2019-06-19 14:10:04	100	100	100
OBJEKTE: UEBERTRAGUNG DP-TYPE-5	SPRI	Springbornstr. 250	STELLEN	2019-06-19 00:00:08	243	243	100
INFO_EVENT (letzter Zustand)	SPRI	Springbornstr. 250	ZAEHLEN	2019-06-19 14:00:06	11	11	100

- Die Übertragung der Messwerte wird aufgelistet
 - Getrennt nach Objekt und Datenpunkt-Typ
- Die Spalte "%" zeigt den Anteil der Datenpunkte mit Messwerten vom heutigen Tag
 - Der Wert ist grün bei 100%, grau bei 0%, sonst gelb
- Datenpunkte mit zyklischen Messwerten (MESSEN und ZÄHLEN) sollten **alle** täglich übertragen
 - der Wert in der Spalte "%" sollte grün sein!

Analysen

🛛 🕞 ANALYSE

- 🔍 Heizkreis-Schnell-Analyse
- Zähler-Analyse
- » 🔁 GRENZWERTE (im Zeitbereich)
- 🕨 🗁 K_MATRIX: Korrelationen
- Heizkreis-Schnell-Analyse
 - Wie verhalten sich die Vor- und Rücklauftemperaturen?
- Zähler-Analyse
 - Wie viel Verbrauch hat eine Zählstation?
- Grenzwerte
 - Flimmernde Datenpunkte:
 Welche Datenpunkte schalten zu häufig?
 - Grenzwerte mit Statistik:
 Welche Datenpunkte haben auffällige Werte?
- K-Matrix-Analyse
 - Wie spielen die Datenpunkte eines Heizkreises zusammen?

Heizkreis-Schnell-Analyse Wie verhalten sich die Vor- und Rücklauftemperaturen?

🛛 🗁 ANALYSE

🔍 Heizkreis-Schnell-Analyse

- 🕂 Zähler-Analyse
- GRENZWERTE (im Zeitbereich)
- K_MATRIX: Korrelationen
- Automatische Analyse der Vorlauf- und Rücklauf-Temperaturen (TV und TR) aller Heizkreise einer Anlage
 - identifiziert via Datenpunkt-Adresse
 (Gewerk, Anlagennummer, Datenpunkt-Kennung)
- Prüfung verschiedener Plausibilitäten
- Bei Bedarf mit Außentemperatur (TS)
- Fragwürdiges Verhalten verschiedener Art wird detektiert

Die Datenpunkt-Adresse

Z **GAA MMM** TT ... | | | |

Funktionstyp

Datenpunkt-Kennung

Gewerk und Anlagennummer

Zentralenbezeichnung

Heizkreis-Schnell-Analyse

Bewertungskriterien (Plausibilitäten)

	Warnung	Alarm					
Messwerte-Intervall	Lückenhaft (> 60 Minuten)	Keine Messwerte					
Mögliche Ursachen: Mögliche Folgen:	Netzwerkausfall, Stromausfall ein Fehlverhalten kann nicht entdec	kt werden					
TV und TR: Stabw.	starke Streuung (> 20 %)	sehr starke Streuung (> 30 %)					
Mögliche Ursachen: Mögliche Folgen:	zu schnelle Regelung, Heizkreisschwingen, erhöhter Energieverbrauch, Teile-Verschleiß,						
∆T=TV-TR: Mittelwert	geringe Spreizung (< 2 K)	negative Spreizung (< 0 K)					
Mögliche Ursachen: Mögliche Folgen:	HK nicht in Betrieb, Fühler vertauscht, Fühler ungünstig montiert, falsche Regelung						
∆T=TV-TR: Stabw.	starke Streuung (> 60 %)	sehr starke Streuung (> 90 %)					
Mögliche Ursachen: Mögliche Folgen:	starke Streuung von TV und/oder TR erhöhter Energieverbrauch						
Korrelation (TV, TR)	sehr gering, positiv (< 50 %)	negative Korrelation					
Mögliche Ursachen: Mögliche Folgen:	TV und/oder TR konstant, gegenläu erhöhter Energieverbrauch	fig oder mit starker Streuung					
Korrelation (TS, TV)	sehr gering, negativ (< 50 %)	positive Korrelation					
Mögliche Ursachen: Mögliche Folgen:	Regelung unabhängig von Außenter erhöhter Energieverbrauch	nperatur					
Korrelation (TS, Δ T)	sehr gering, negativ (< 50 %)	positive Korrelation					
Mögliche Ursachen: Mögliche Folgen:	Verbrauch unabhängig von Außentemperatur erhöhter Energieverbrauch						

jLZHview / jLZHweb, Energie- & Umweltbüro e.V.

Heizkreis-Schnell-Analyse Ergebnis-Tabelle

Heizkreis-Schnell-Analyse (Zeitbereich 1. bis 8. Feb. 2019)

Anlage	HK-Beschreibung	∆t-Max [hh:mm]	TV-Mittel [°C]	TV-Streuung [%]	TR-Mittel [°C]	TR-Streuung [%]	∆T-Mittel [°C]	∆T-Streuung [%]	K(TV,TR)	TS-Min [°C]
H01	H01 WT-primär	00:10	101,418	1	53,845	4	47,572	5	-0,266	-1,310
H05	H05 WT-sekundär	00:10	65,278	3	53,160	5	12,118	17	0,548	-1,310
H10	H10 Neubau-FBH	00:10	40,475	19	36,564	19	3,912	42	0,981	-1,310
H20	H20 Neubau-HZG	00:10	43,040	13	40,112	11	2,929	41	0,984	-1,310
H30	H30 Neubau-RLT	00:10	64,875	3	54,952	4	9,923	17	0,627	-1,310
H40	H40 Neubau-FBH	00:10	43,662	11	38,987	13	4,675	26	0,972	-1,310
H50	H50 Neubau-HZG	00:20	42,992	13	38,773	10	4,222	49	0,950	-1,310
H60	H60 Altbau-HZG	00:10	42,986	13	38,805	11	4,181	36	0,977	-1,310
H70	H70 Altbau-RLT	00:20	64,721	3	63,155	3	1,568	29	0,970	-1,310
H80	H80 Altbau-FBH	00:10	39,020	10	30,994	17	8,026	94	-0,460	-1,310
H90	H90 Neubau-HZG	00:10	43,034	13	40,989	11	2,045	52	0,990	-1,310

• Die Tabelle zeigt alle **automatisch** gefundenen Heizkreise:

- WT primär und sekundär (Fernwärme)
- 4x HZG (Heizung), 3x FBH (Fußboden), 2x RLT (Lüftung)
- Die Bewertungskriterien wurden **automatisch** angewendet
 - Für Messwerte im Zeitbereich
 - Hier ohne Berücksichtigung der Außentemperatur
- Heizkreise mit roten Werten (Alarm) sollten geprüft werden

Heizkreis-Schnell-Analyse Ergebnis-Grafik

Heizkreis-Schnell-Analyse (Zeitbereich 1. bis 8. Feb. 2019)

Die Grafik zeigt die Temperaturen f
ür alle Heizkreise:
 – Vorlauf, R
ücklauf, Außentemperatur, Spreizung (ΔT)

Heizkreis-Schnell-Analyse ohne Berücksichtigung der Außentemperatur

Werte im Alarm-Bereich prüfen...

Anla	ge HK-Beschreibung	∆t-Max [hh:mm]	TV-Mittel [°C]	TV-Streuung [%]	TR-Mittel [°C]	TR-Streuung [%]	∆T-Mittel [°C]	∆T-Streuung [%]	K(TV,TR)	TS-Min [°C]
H01	H01 WT-primär	00:10	101,418	1	53,845	4	47,572	5	-0,266	-1,310
H80	H80 Altbau-FBH	00:10	39,020	10	30,994	17	8,026	94	-0,460	-1,310

Werte im Alarmbereich

Korrelation (TV, TR) negativ

Ursache TV, TR im Wesentlichen konstant **Folgerung** OK für Fernwärme-Anschluss

2 Werte im Alarmbereich

- Streuung der Spreizung ∆T sehr groß
- Korrelation (TV, TR) negativ

Ursache TV, TR gegenläufig **Folgerung** Regelung problematisch!

Heizkreis-Schnell-Analyse mit Berücksichtigung der Außentemperatur

Werte im Alarm-Bereich prüfen...

Anlage	HK-Beschreibung	∆t-Max [hh:mm]	TV-Mittel [°C]	TV-Streuung [%]	TR-Mittel [°C]	TR-Streuung [%]	∆T-Mittel [°C]	TS-Min [°C]	K(TS,TV)	K(TS,∆T)
H10	H10 Neubau-FBH	00:10	40,475	19	36,564	19	3,912	-1,310	0,296	0,184
H20	H20 Neubau-HZG	00:10	43,040	13	40,112	11	2,929	-1,310	0,086	-0,108

Werte im Alarmbereich

- Korrelation (TS,TV) positiv
- Korrelation (TS,∆T) positiv

Ursache

Vorlauftemperatur und Spreizung folgen nicht der Außentemperatur **Folgerung** Regelung problematisch!

2 Werte im Alarmbereich

Korrelation (TS,TV) positiv

Ursache Nacht-Absenkung **Folgerung** Tag- / Nacht-Betrieb sollte getrennt betrachtet werden

Zähler-Analyse Wieviel Verbrauch hat eine Zählstation?

- Stündlicher, täglicher oder monatlicher Verbrauch
- Bei Bedarf mit Anzeige einer Außentemperatur
- Datenpunkte der Zählstationen und die Außentemperatur werden automatisch identifiziert
- Das Zählmedium (kWh, m³, ...) kann ausgewählt werden

Zähler-Analyse Verbrauch stündlich über einen Tag

Dargestellt sind

- stündliche Verbrauchsbalken (blau)
- stündlich interpolierte Zähler-Werte (rot)
- stündliche Mittelwerte der Außentemperatur (grau)

Für die beiden Zähler im Objekt

- WT-primär Energie kWh Der Verbrauch variiert im Tagesverlauf mit einem Maximum (~60 kW) zwischen 9 und 10 Uhr.
- WT-primär Volumen m³
 Der Verbrauch ist nahezu konstant über den Tag (~2,5 m³ pro Stunde).

Zähler-Analyse Verbrauch täglich über einen Monat

Dargestellt sind

- stündliche Verbrauchsbalken (blau)
- stündlich interpolierte Zähler-Werte (rot)
- stündliche Mittelwerte der Außentemperatur (grau)

Für die beiden Zähler im Objekt:

- **WT-primär Energie kWh** Der Verbrauch korreliert mit der Außentemperatur: Temperatur klein \rightarrow Verbrauch groß.
- WT-primär Volumen m³ Der Verbrauch korreliert mit der Außentemperatur, begrenzt mit ~60 m³ pro Tag.

Zähler-Analyse Verbrauch monatlich über ein Jahr

Dargestellt sind

- stündliche Verbrauchsbalken (blau)
- stündlich interpolierte Zähler-Werte (rot)
- stündliche Mittelwerte der Außentemperatur (grau)

Für die beiden Zähler im Objekt:

- WT-primär Energie kWh
- WT-primär Volumen m³

Der Verbrauch beider Zähler korreliert mit der Außentemperatur: Temperatur klein \rightarrow Verbrauch groß.

Grenzwerte Flimmern Welche Datenpunkte schalten zu häufig?

- Ein zu häufiger Zustandswechsel kann auf ein unruhiges und suboptimales Verhalten des Systems hinweisen.
- Flimmernde Datenpunkte (Typ Melden) können identifiziert werden:
 - Kesseltakten
 - Betriebsmeldungen von Heizkreisen, Pumpen, Ventilen
 - etc.

Grenzwerte Flimmern Welche Datenpunkte schalten zu häufig?

Grenzwerte Flimmern im Zeitbereich 1. bis 8. Feb. 2019

	🍸 ОВЈЕКТ	W BESCHREIBUNG	🍸 ANZAHL	Y PRO_TAG	Y PRO_STD	Y PPO_MIN	Y BEMERKUNG
1)>	SPRI	H20 SG PU BM	1165	166	6	< 1	SG Heizung Pumpe Umwälzen BetriebsMeldung
	SPRI	H40 TH-DECKE PU BM	746	106	4	< 1	TH-DECKE Heizung Pumpe Umwälzen BetriebsMeldung
	SPRI	H10 HORT PU BM	725	103	4	< 1	HORT Heizung Pumpe Umwälzen BetriebsMeldung
	BAFW	H70 Altbau-RLT VR BA AUF	570	81	3	< 1	Altbau-RLT Heizung Ventil Rücklauf BetriebAnforderung AUF
	BAFW	H30 Neubau-RLT VV BA AUF	560	80	3	< 1	Neubau-RLT Heizung Ventil Vorlauf BetriebAnforderung AUF

Grenzwerte verwalten mit Statistik der Messwerte im Zeitbereich

- Zähler-Analyse
- 🛛 👝 GRENZWERTE (im Zeitbereich)
 - FLIMMERN
 - DP_MW_STATISTIK
 - DP_GRENZWERTE
- K_MATRIX: Korrelationen

 Grenzwerte werden in wenigen Schritten parametriert

- (1) Tabelle öffnen: DATENPUNKTE (Typ Messen) mit Statistik der Messwerte im Zeitbereich: Anzahl, Min, Max, Mittel, Streuung
- (2) Datenpunkte sortieren, filtern, auswählen: einzeln oder mehrere
- (3) Grenzwerte setzen (die Tabelle zeigt einige Beispiele)

Beispiele für Grenzwerte mit Datenpunkt-Auswahl	Alarm unten	Warnung unten	Warnung oben	Alarm oben	Warnung Stabw.
Leistung (kW)			100	150	
Temperatur Vorlauf (°C)	0	15	100	120	
Temperatur Rücklauf (°C)	0	15	100	120	
Ventilstellung, Drehzahl etc. (%)	0			100	20
Regeldifferenz (K)	-10	-5	+5	+10	5

Grenzwertverletzungen anzeigen Welche Datenpunkte haben auffällige Werte?

- Grenzwerte wurden zuvor gesetzt
- Die Tabelle zeigt die Grenzwertverletzungen im Zeitbereich (hier ein Auszug)

Grenzwertverletzungen anzeigen und prüfen im Zeitbereich 1. bis 8. Feb. 2019

		Т ОВЈЕКТ	W BESCHREIBUNG	Y EINHEIT	🍸 MIN	🍸 МАХ	Y MITTEL	Y STABW	▼ GRENZWERT
	1	BAFW	H01 WT-primär Leistung kW	kW	0	108,1	48,732	13,502	Obere Warngrenze: MAX $> 100 \text{ kW}$
(2)		BAFW	H02 WT-primär HKR PID X-W	К	-18,305	-3,728	-11,21	2,041	Untere Alarmgrenze: MITTEL < -10 K
4	3	SPRI	H01 WT TV_IST	°C	0	0	0	0	Untere Warngrenze: MITTEL < 15 °C
		SPRI	H22 SG PG Leistung	%	0	100	35,927	45,263	Standardabweichung STABW $>$ 20 %

Grenzwertverletzungen wurden gefunden

 (1)Anschluss-Leistung FW: Maximum > 100 kW (Warnung)
 (2)Regeldifferenz: Mittel < -10 K (Alarm)
 (3)Vorlauftemperatur: Mittel < 15°C (Warnung)
 (4)Pumpen-Leistung: Standardabweichung > 20% (Warnung)

Grenzwertverletzungen anzeigen

Was steckt dahinter?

Antworten auf diese Fragen können leider (noch) nicht automatisch gefunden werden!

K-Matrix-Analyse

Wie spielen die Datenpunkte eines Heizkreises zusammen?

• Messwerte-Statistik und Korrelationen der ausgewählten Datenpunkte

- In einem Standard-Heizkreis wird benötigt:
 - Temperatur-System (TS)
 - Temperatur-Vorlauf (TV): Soll- und Ist-Wert
 - Temperatur-Rücklauf (TR)
 - Ventil-Vorlauf (VV): Soll- und Ist-Wert
 - Heizkreis-Betriebsmeldung (HK BM), z.B. TAG / NACHT
- Datenpunkte mit Messwerten verfügbar in der GLT:
 - Erfassungsintervall stündlich, besser 10-minütlich
 - Archiv-Werte über mindestens ein Jahr (Jan. Dez.), besser mehrere Jahre

K-Matrix-Analyse

Wie spielen die Datenpunkte eines Heizkreises zusammen?

- Die verschiedenen Betriebsmodi eines Heizkreises werden getrennt betrachtet, z.B
 - Betriebszustand TAG
 - Sollwert > 0°C
 - Ventil > 0%
- Der Zeitbereich einer Analyse beträgt z.B ein Jahr mit monatlichen Ergebnissen
- Das Ergebnis einer Analyse (Statistik und Korrelationen) wird als Tabelle und als Grafik ausgegeben
- Das folgende Beispiel zeigt einen Heizkreis
 - mit den Betriebsmodi TAG, NACHT und AUS
 - im Zeitbereich Jan. bis Dez. 2018

K-Matrix-Analyse: Ergebnis als Tabelle Monat Januar 2018, getrennt nach Betriebsmodus

	Eingabe	ingabe														
	Datenpunkte	Filt	er	Ζ	eitbereich	Stat	Statistik Korrelationen									
N	BESCHREIBUNG	Y_MIN	Y_MAX	К	DATUM_VON	ANZAHL	MIN	MAX	AVG	STDDEV	1	2	3	4	5	6
1	H33 SG-N TS_IST			1	2018-01-01 00:00:00	1602	-0,773	8,688	3,879	2,289	1	-0,999	-0,957	-0,728	-0,618	-0,618
2	H30 SG-N TV_SOLL			1	2018-01-01 00:00:00	1602	50,296	65,698	58,668	3,927	-0,999	1	0,957	0,732	0,62	0,62
3	H30 SG-N TV_IST			1	2018-01-01 00:00:00	1602	43,98	68,813	58,612	4,054	-0,957	0,957	1	0,742	0,538	0,539
4	H30 SG-N TR_IST			1	2018-01-01 00:00:00	1602	31,416	49,165	43,589	2,751	-0,728	0,732	0,742	1	0,215	0,215
5	H30 SG-N VV_SOLL		\G	1	2018-01-01 00:00:00	1602	45,567	98,88	75,798	6,568	-0,618	0,62	0,538	0,215	1	1
6	H30 SG-N VV_IST			1	2018-01-01 00:00:00	1602	45,566	98,625	75,793	6,563	-0,618	0,62	0,539	0,215	1	1
7	H30 SG-N HK BM Aus.Nach	1	1	1	2018-01-01 00:00:00	1602	1	1	1	0						
N	BESCHREIBUNG	Y_MIN	Y_MAX	K	DATUM_VON	ANZAHL	MIN	MAX	AVG	STDDEV	1	2	3	4	5	6
1	H33 SG-N TS_IST			1	2018-01-01 00:00:00	2861	-0,365	8,758	4,372	2,082	1	-0,986	-0,973	-0,854	-0,666	-0,669
2	H30 SG-N TV_SOLL			1	2018-01-01 00:00:00	2861	33,673	63,772	41,385	3,726	-0,986	1	0,964	0,842	0,68	0,677
3	H30 SG-N TV_IST			1	2018-01-01 00:00:00	2861	31,419	56,491	41,384	3,761	-0,973	0,964	1	0,881	0,627	0,63
4	H30 SG-N TR_IST			, 1	2018-01-01 00:00:00	2861	29,127	47,919	34,139	2,403	-0,854	0,842	0,881	1	0,331	0,333
5	H30 SG-N VV_SOLL	NA	CHT	1	2018-01-01 00:00:00	2861	0	95,794	53,536	8,133	-0,666	0,68	0,627	0,331	1	0,997
6	H30 SG-N VV_IST			1	2018-01-01 00:00:00	2861	0,134	95,651	53,527	8,124	-0,669	0,677	0,63	0,333	0,997	1
7	H30 SG-N HK BM Aus.Nach	2	2	1	2018-01-01 00:00:00	2861	2	2	2	0						
N	BESCHREIBUNG	Y_MIN	Y_MAX	K	DATUM_VON	ANZAHL	MIN	MAX	AVG	STDDEV	1	2	3	4	5	6
1	H33 SG-N TS_IST			1	2018-01-01 00:00:00	0										
2	H30 SG-N TV_SOLL			1	2018-01-01 00:00:00	0										
3	H30 SG-N TV_IST			1	2018-01-01 00:00:00	0		Γ.								
4	H30 SG-N TR_IST			1	2018-01-01 00:00:00	0			Jer E	setriel	osmo	odus	AUS	s kor	nmt	
5	H30 SG-N VV_SOLL	A	JS	1	2018-01-01 00:00:00	0			nier i	m Mo	nat :	Janu	ar ni	cht \	/or.	
6	H30 SG-N VV_IST			1	2018-01-01 00:00:00	0										
7	H30 SG-N HK BM Aus.Nach	0	0	1	2018-01-01 00:00:00	0										

K-Matrix-Analyse: Ergebnis als Grafik im Betriebsmodus TAG

jLZHview / jLZHweb, Energie- & Umweltbüro e.V.

K-Matrix-Analyse: Ergebnis als Grafik im Betriebsmodus NACHT

K-Matrix-Analyse: Ergebnis als Grafik im Betriebsmodus AUS

K-Matrix-Analyse: Ergebnis deuten Was lässt sich in diesem Beispiel erkennen?

- Die Betriebsmodi sind logisch richtig über das Jahr verteilt
 - Sommermonate (Jun., Jul., Aug.): Betriebsmodus AUS
 - Wintermonate (Jan., Feb., Mär., Nov., Dez.):
 Betriebsmodi TAG und NACHT
 - Übergangsmonate (Apr., Mai, Sep., Okt.):
 Betriebsmodi TAG, NACHT und AUS

K-Matrix-Analyse: Ergebnis deuten

Was lässt sich in diesem Beispiel noch erkennen?

- Betriebsmodus TAG
 - Wintermonate in Ordnung
 - Übergangsmonate:
 - Korrelation (VV-IST, TV-IST) im Alarm-Bereich (<50%)
 - Vorlauf-Temperatur reagiert schlecht auf Ventil-Stellung
- Betriebsmodus NACHT
 - Winter- und Übergangsmonate im Wesentlichen ähnlich
 - Verschiedene Korrelationen im Mai sehr schlecht
- Betriebsmodus AUS
 - Sommer- und Übergangsmonate in Ordnung: Ventil zu, Vorlauf-Sollwert bei 0°C

Zusammenfassung Automatisierte Anlagen-Analyse

Die Programme **jLZHview** und **jLZHweb** unterstützen einen GLT-Anwender bei der Erkennung von Fehlverhalten und somit bei der Optimierung des Anlagen-Betriebs.

- Übertragung der Messwerte prüfen
 - im Überblick und im Detail
- Grenzwerte parametrieren und anzeigen
- Flimmernde Datenpunkte erkennen
- Heizkreis-Schnell-Analyse: Plausibilitäten prüfen
- K-Matrix-Analyse: Detaillierte Heizkreis-Analyse
 - mit zyklischer Statistik und Korrelationen (z.B. monatlich über ein Jahr)
 - mit Filterkriterien (z.B. Betriebszustand TAG/NACHT)

ANHANG

Heizkreis-Schnell-Analyse Ergebnis prüfen: Warum sind TV und TR gegenläufig?

Heizkreis-Schnell-Analyse Ergebnis beurteilen

- Es ist kein plausibler Zusammenhang zwischen Vorlauftemperatur (TV) und Ventilstellung erkennbar.
- Ohne Information über die Pumpe (eine Betriebsmeldung EIN/AUS oder besser die Drehzahl) lässt sich dieses Verhalten nicht erklären.

Heizkreis-Schnell-Analyse

Ergebnis prüfen: Warum sind die Korrelationen mit TS positiv?

Heizkreis-Schnell-Analyse

Ergebnis beurteilen

- Ventil auf (>0%): Die Temperaturen vom Vorlauf liegen auf dem Sollwert bei etwa 30°C, der Rücklauf bei etwa 25°C (plausibel für eine Fußbodenheizung).
- Ventil zu (=0%): Die Temperaturen von Vor- und Rücklauf gleichen sich an die Temperatur im Verteiler an (Fühler dicht hinter dem Ventil?).

K-Matrix-Analyse Datenpunkt-Auswahl

